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Gauge-invariant canonical quantisation of the 
electromagnetic field and duality transformations 

R Dale Gray and Donald H Kobe 
Department of Physics, North Texas State University, Denton, Texas 76203, USA 

Received 12 March 1982 

Abstract. The free electromagnetic field is canonically quantised in a gauge-invariant way 
by interpreting the Fourier coefficients of the magnetic induction field B as generalised 
coordinates, and the coefficients of the electric field E as their conjugate momenta. The 
usual commutation relations among the components of E and B are obtained. A canonical 
transformation, corresponding to a rotation in generalised phase space, is made on the 
Fourier coefficients. This transformation is shown to give a duality transformation on the 
electric and magnetic fields. The free-field Maxwell equations and the commutation 
relations are invariant under duality transformations. However, if interactions are intro- 
duced, the invariance under duality transformations is broken, and the original canonical 
theory should be used. 

1. Introduction 

In the usual approach (Heitler 1954) to the quantisation of the free electromagnetic 
field the gauge of the electromagnetic potentials is first fixed (Fermi 1931) in either 
the radiation (Coulomb) gauge or the Lorentz gauge (Heisenberg and Pauli 1929, 
Gupta 1950, Bleuler 1950). If the radiation gauge is used, then a Fourier expansion 
of the transverse vector potential is made. When the Hamiltonian is expressed in 
terms of the vector potential, it reduces to a sum of uncoupled harmonic oscillator 
Hamiltonians. The harmonic oscillators are then canonically quantised (Sakurai 1967, 
Bjorken and Drelll965). If the Lorentz gauge (Wentzell949) is used for quantisation, 
subsidiary conditions must be imposed and an indefinite metric used to avoid contradic- 
tions (Mandl 1959, Schweber 1961). It must then be shown that the two procedures 
yield the same results, so that gauge invariance is ensured (Haller 1973, 1975, Sohn 
and Haller 1977, Zumino 1960, Strocchi and Wightman 1974). 

In order to avoid the problems associated with using a particular gauge for 
quantisation, a number of authors have developed gauge-independent or gauge- 
invariant quantisation procedures (Dirac 1955, Bergmann 1956, Goldberg and Marx 
1968, Marx 1970, 1972, Rzqiewski and Wodkiewicz 1980, Woolley 1980). Non-local 
(Belinfante and Lomont 1951, Belinfante 1951a, b, Goldberg 1958, 1965) or path- 
dependent (Mandelstam 1962) methods, as well as non-canonical methods (Sharp 
1968, Menikoff and Sharp 1977), have been suggested. The idea of using the electric 
and magnetic fields themselves instead of the potentials in the quantisation of the free 
electromagnetic field goes back to Jordan and Pauli (1928). Kramers’ treatment 
(1958) uses a complex vector in which the real part is the electric field and the 
imaginary part is the magnetic field. His approach is similar to one previously used 
by Pauli (1933). 
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Power (1964) developed a manifestly gauge-invariant canonical quantisation pro- 
cedure which directly uses the electric and magnetic fields. The Hamiltonian density 
for the free electromagnetic field is $(E’ + B’), where E is the electric field and B is 
the magnetic induction field. By expanding B and E in normal modes, and interpreting 
the expansion coefficients of B as generalised coordinates and the expansion 
coefficients of E as the conjugate momenta, he was able to show that the Hamiltonian 
for the free electromagnetic field reduces to the Hamiltonian for a countable set of 
uncoupled harmonic oscillators. The oscillators were quantised in the canonical way. 
Scully and Lamb (1967), on the other hand, turn the procedure around. They associate 
the expansion coefficients of E with the generalised coordinates and the expansion 
coefficients of B with the conjugate momenta (Sargent et a1 1974). 

Both Power and Scully and Lamb use the Hamiltonian of the free electromagnetic 
field as their starting points. They both assume a relationship between the canonical 
momentum and generalised velocity. However, in order to define the conjugate 
momentum, it is necessary to use the Lagrangian. Then the Hamiltonian is defined 
by a Legendre transformation. Power introduces the standard Lagrangian density 
(Jackson 1975, Kobe 1981) i ( E 2 - B 2 )  only after he obtains the equations of motion. 
Scully and Lamb never discuss the Lagrangian density. The approaches used by 
Power and Scully and Lamb are thus not strictly canonical. 

If the usual Hamiltonian is to be derived from the canonical procedure, the choice 
of generalised coordinates made by Scully and Lamb requires the use of the non- 
standard Lagrangian density (Jackson 1975) $(B2 - E’). Although this Lagrangian 
density gives Maxwell’s equations for the free field, its use in the total Lagrangian of 
a system of fields and charged matter does not give Maxwell’s equations. Scully and 
Lamb introduce interactions in the electric dipole approximation by using -SE r 
for the interaction Hamiltonian for a particle of charge q and displacement r. A 
similar procedure was followed by Savolainen and Stenholm (1972) and Stenholm 
(1973), who also use the electric dipole approximation. They use the electric displace- 
ment vector D and the magnetic field strength H, however. 

In this paper the ambiguity as to whether the generalised coordinates should be 
associated with the Fourier coefficients of E or B is resolved by examining the 
Lagrangian formulation. The standard Lagrangian density for the electromagnetic 
field is $(E2--B2)  (Jackson 1975, Kobe 1981). When this expression is compared 
with the Lagrangian of classical mechanics, which is kinetic energy minus potential 
energy, the $E2 plays the role of a kinetic energy and the gB2 plays the role of a 
potential energy. Thus it seems natural from the Lagrangian point of view to associate 
the expansion coefficients of B with the generalised coordinates, and the expansion 
coefficients of E with the generalised velocities. When a canonical momentum is 
defined, the expansion coefficients of E are then related to momentum. This assign- 
ment is also in keeping with the classical theory of the electromagnetic field, based 
on potentials, where the momentum conjugate to the generalised coordinate A is - E  
(Kobe 1981). Without using potentials, we develop the theory for the free electromag- 
netic field in this paper using a strictly canonical formulation starting from the standard 
Lagrangian, defining canonical momentum, deriving the Hamiltonian, and obtaining 
the equations of motion. The kinematical equations give Faraday’s law, while the 
dynamical equations give the Ampere-Maxwell law. 

The theory of Power for the free electromagnetic field is related to the theory of 
Scully and Lamb by a canonical transformation on the generalised coordinates and 
momenta, which is a rotation in generalised phase space. The canonical transformation 
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is shown to be equivalent to a duality transformation (Jackson 1975, p 252) on the 
electric and magnetic fields. Under a duality transformation the free-field Maxwell 
equations are invariant, as are the commutation relations between the field com- 
ponents. For the free electromagnetic field, the procedure of Scully and Lamb is 
equivalent to that of Power. 

When interactions are present the two approaches are no longer equivalent. In 
the approach of Power (1964), Faraday’s law is unchanged since it is kinematical. 
The Ampbre-Maxwell law with the current density is obtained as the dynamical law. 
On the other hand, in the approach of Scully and Lamb (1967) and Sargent et a1 
(1974) the free-field Ampkre-Maxwell law is the kinematical equation while Faraday’s 
law is the dynamical equation. When interactions are present, Faraday’s law is no 
longer satisfied. Therefore we conclude that when the electromagnetic field is interact- 
ing with charged matter, the correct approach is the one of Power based on the 
standard Lagrangian density for the electromagnetic field. 

In 0 2 the Lagrangian formalism for the free electromagnetic field is developed 
for the Fourier coefficients of B as generalised coordinates and of E as generalised 
velocities. The corresponding canonical formalism is given in 0 3 which includes both 
the Hamiltonian formalism and Poisson brackets. Canonical quantisation is performed 
in 0 4. In 0 5 canonical transformations corresponding to rotations in generalised 
phase space are made on the Fourier coefficients. These transformations are shown 
to give a duality transformation on the electric and magnetic fields in 0 6. Finally the 
conclusion is given in § 7. 

2. Lagrangian formulation 

A Lagrangian formulation of the free electromagnetic field is given in this section. It 
differs from the usual Lagrangian formulations (Heitler 1954) in that potentials are 
not introduced. In this approach Gauss’s law, the condition that magnetic monopoles 
do not exist, and Faraday’s law are kinematical equations, while the Ampere-Maxwell 
law is obtained as a dynamical equation. 

The standard gauge-invariant Lagrangian for the free electromagnetic field is 
(Jackson 1975, Kobe 1981, Sakurai 1967, pp 12-5) 

L = f  d3x(E2-B2), J 
in Lorentz-Heaviside units (c = 1). The form of this Lagrangian suggests a natural 
way to introduce the generalised coordinates and velocities. When equation (2.1) is 
compared with the Lagrangian of classical mechanics, the location of the minus sign 
in equation (2.1) suggests that $E2 be interpreted as kinetic energy and iB2 be 
interpreted as potential energy. Hence it is natural to associate B with generalised 
coordinates and E with generalised velocities. 

A Fourier expansion of the magnetic induction field B in a cubic volume V can 
be made, 

in which the coefficients q k A  are interpreted as generalised coordinates. The unit 
polarisation vectors E*(*)(k) for A = 1 , 2  are chosen such that E*“)(k), Zi2’(k) and 
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k^ = k/k form a right-handed orthonormal basis of three vectors which satisfy 

E*(A)(-k) = (-l)A+l$A)(k)+ (2.3) 

Since the magnetic induction is real, the generalised coordinates 4kA in equation (2.2) 
satisfy 

q &  = (-l)A+lq-kA, (2.4) 

In summing over only two polarisations in equation (2.2) we have ensured that 

V * B = O ,  (2.5) 
which is one of the Maxwell equations saying that there are no magnetic monopoles. 
With the expansion in equation (2.2) the term involving B 2  in equation (2.1) depends 
only on the generalised coordinates 4kA as would be expected for a potential energy. 

A Fourier expansion of the electric field E in the cubic volume V can be made, 

in terms of the generalised velocities, which are written for convenience as cjki. The 
polarisation index 1 = - A  + 3, so i = 2 and 2 = 1. The electric field is real because 
of equation (2.4). Gauss’s law 

V * E = O  (2.7) 

is satisfied by the electric field in equation (2.6) because only transverse polarisations 
are used. Because of the expansion in equation (2.6), the term involvingE2 in equation 
(2.1) depends only on the generalised velocities, as would be expected for a kinetic 
energy. 

Faraday’s law, 

v x E = -aB/at, (2.8) 

is satisfied by the electric field in equation (2.6) and the magnetic induction in equation 
(2.2). The expansion of the magnetic induction includes the wavenumber k = lkl, and 
the expansion of the electric field includes the factor i(-l)A+l along with the polarisation 
index 1 for the generalised velocity. These terms are used so that Faraday’s law is 
satisfied identically. In order to derive equation (2.8) we used the relation 

k^ x P ( k )  = ( - l ) i P ) ( k ) .  (2.9) 
Faraday’s law is thus a kinematical equation here, as it is automatically in a gauge 
theory where potentials are used (Kobe 1978, 1980). 

When equations (2.2) and (2.6) are substituted into equation (2.1), the Lagrangian 
becomes 

(2.10) 

which is the Lagrangian for independent harmonic oscillators with complex generalised 
coordinates. The E 2  term in equation (2.1) is the kinetic energy of the oscillators and 
the B 2  term is the potential energy of the oscillators. The Euler-Lagrange equations 

d(aL/aqt ) /d t  -aL/aqG = 0,  (2.11) 
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for all k and A follow from the principle of least action. When equation (2.10) is 
substituted into equation (2.1 l), we obtain 

q k A  = - k 2 q k A ,  (2.12) 

which is the equation of a harmonic oscillator of frequency w = k. From equations 
(2.2), (2.6), and (2.12) we obtain the Ampkre-Maxwell law 

(2.13) 

for the free field. Therefore the Ampkre-Maxwell law is a dynamical law, as it is in 
the case of gauge field theory (Kobe 1978, 1980). Equations (2.5), (2.7), (2.8) and 
(2.13) are all of the Maxwell equations. 

V x B = aE/at 

3. Canonical formalism 

The Hamiltonian formalism and Poisson brackets are essential for canonical quantisa- 
tion. In this section we extend the Lagrangian formalism of 0 2 to the Hamiltonian 
formalism. In electromagnetic field theory the Hamiltonian (Sakurai 1967, pp 12-5) 

H = $  d3x(E2+B2) I (3.1) 

for the free field is constructed from the Lagrangian in equation (2.1) by the standard 
canonical method of introducing potentials and treating them as generalised coordin- 
ates (Kobe 1981). 

We shall use for the free electromagnetic field the Lagrangian L in equation (2.10). 
From the definition of the conjugate momenta 

PkA = aL/aqkA, (3.2) 

PkA = 4:A. (3.3) 

the canonical momenta in this case are 

Therefore the Hamiltonian determined by a Legendre transformation on equation 
(2.10) is (Goldstein 1980) 

(3.4) 

Equation (3.4) can be shown to be equal to equation (3.1) by using equations (2.2), 
(2.6) and (3.3). 

In terms of the canonical variables 4kA and PkA, Hamilton’s equations are 

Equations (3.5) and (3.4) give 

q k A  =p:A’;\, (3.7) 

p k A  = - k 2 q k  (3.8) 

which is the complex conjugate of equation (3.3). Equations (3.6) and (3.4) give 
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which is a dynamical equation. If we eliminate PkA between equations (3.7) and (3.8), 
we obtain equation (2.12), from which the Ampkre-Maxwell law in equation (2.13) 
is obtained. Equation (3.7) or equation (3.3) allows the electric field in equation (2 .6 )  
to be written as 

(3.9) 

in terms of the conjugate momentum. 
The time development of a classical function of the canonical variables can be 

expressed in terms of the Poisson bracket (Goldstein 1980). Given two functions F 
and G of qkA and PkA, the Poisson bracket is defined by 

From equation (3.10) we find the Poisson brackets 

{qkA, Pk'A'} = ak,k'aA,A', 

{qkA, qk'h'} = 0 ,  
and 

{PkA, Pk'A') = 0 ,  

where 8k.k'  and 8 A , A ,  are Kronecker deltas. 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

The time rate of change of a function F of qkA, PkA and c is 

dF/dt = {F, H }  + aF/at. (3.14) 

The equations of motion can be written using equation (3.14) as 

4kA = {qkA, HI, (3.15) 

pkA = {PkA, H ) .  (3.16) 

Equation (3.15) gives equation (3.7) when the Hamiltonian in equation (3.4) is used, 
while equation (3.16) gives equation (3.8). The classical canonical formalism is com- 
plete, and the theory can now be quantised in a canonical manner. 

The time rate of change of a function F of qkA, PkA and r is 

4. Canonical quantisation 

The process of canonical quantisation involves replacing the generalised coordinates 
qkA and the conjugate momenta PkA by operators on a Hilbert space (Heitler 1954). 
The Poisson bracket { , } defined in equation (3.10) is replaced by (ih)-' times the 
commutator [ , 3. Hence equations (3,ll)-(3.13) are replaced by 

and 

[PkA, Pk'A'l = 0 ,  

respectively. 

(4.3) 
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If F is a function of the generalised coordinates qkA and the conjugate momenta 
P k A ,  it becomes an operator on quantisation. The order of the qkA and PkA makes a 
difference and a symmetric form which is Hermitian is usually used. The equation of 
motion for F in equation (3.14) becomes on quantisation 

(4.4) 
where the partial derivative indicates a differentiation with respect to the explicit 
dependence of F on time. Equations (2.21, (2.4), (3.9) and (3.4) hold as operator 
equations with complex conjugation (*) replaced by Hermitian conjugation (t). 

We can use equations (4.1)-(4.3) to find commutation relations among the com- 
ponents of B and E. In performing the calculations, a useful relation is 

@/dt = (iA)-’[F, HI + aF/at, 

f &jA)(k)&F)(k)+ kik j /k2  = 8 ,  
A = l  

(4.5) 

where the Cartesian components are denoted by the subscripts i and j .  Equation (4.5) 
results from the fact that E*(’)(k), t ‘ ” ( k ) ,  k  ̂ form an orthonormal basis. Equations 
(4.1)-(4.3) and (4.5) give the gauge-invariant equal-time commutation relations for 
the components of B in equation (2.2) and E in equation (3.9), 

where ~~~k is the Levi-Civita symbol, the derivative is 13k = d / d x k ,  and summation over 
repeated indices from 1 to 3 is implied. The commutation relations in equations 
(4.6)-(4.8) are the same as obtained by other means of quantisation (Heitler 1954). 

5. A canonical transformation on Fourier coefficients 

The canonical variables used to describe a physical system are not unique. As long 
as Hamilton’s equations in equations (3.5) and (3.6) are unchanged under a change 
of canonical variables to qkA and pkAy  the new set of canonical variables describes the 
same physical system as qkA and P k A  (Goldstein 1980). 

Consider the transformation, parametrised by 8, to new variables qiA and p i A ,  

PkA = p(X)qk% sin e + p i A  cos e, (5.2) 
where a(X) and p(X) are introduced for dimensional reasons and X = -A + 3. Under 
certain conditions on (Y and p, equations (5.1) and (5.2) describe a rotation in a 
generalised complex phase space. The Hamiltonian in terms of q;A and piA is 

(5.3) 
By definition, the transformation of equations (5.1) and (5.2) is canonical if 

H’tq’, P ’ )  =H(q(q ’ ,  P ’ ) ,  p(q’ ,  P ’ ) ) .  

equations (3.5) and (3.6) imply that 

4iA = aHf/apiA (5.4) 
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and 

p;, = -aH’/aq;,. (5.5) 
If the chain rule and equations (3.5) and (3.6) are used in differentiating equation 
(5.3), we obtain 

aH’/aq;, = -pih (cos’ e - CY ( A  )p ( A  ) sin2 e) - (p (1) + p ( A  ))Q;? sin e COS e, (5.6) 

and 

aH’/apih =Q;,,(cos* e-p(A)a(A)  sin2 @)+(a(A)+a(I))p;? sin 8 cos 8. (5.7) 

Equations (5.6) and (5.7) imply that the necessary and sufficient conditions for 
equations (5.4) and ( 5 . 5 )  to hold are 

a(A)P(A) = -1, (5 .8 )  

a(A)+a( i )  = 0,  (5.9) 

and 

D ( A ) + p ( h ) = O .  (5.10) 

Since E and B have the same dimensions, we see from a comparison of equations 
(2.2) and (3.9) that @ ( A )  has the dimensions of k and C Y @ )  has the dimensions of 
I C - ’ .  Therefore, under the transformation in equations (5.1) and (5.2) Hamilton’s 
equations are unchanged in form if equations (5.8)-(5.10) are also satisfied. 

6. Duality transformations 

In this section, we show that a duality transformation on the electric and magnetic 
fields is produced by the canonical transformation of 0 5 on the Fourier coefficients. 
In equations (5.1) and (5.2), we choose 

It is then seen from equations (6.1) and (6.2) that equations (5.8H5.10) are satisfied. 
Hence equations (5.6) and (5.7) reduce to equations (5.4) and ( 5 . 5 ) .  Equations (5.1) 
and (5.2) constitute a canonical transformation when equations (6.1) and (6.2) are 
used. This canonical transformation produces a duality transformation on E and B.  

A new magnetic induction vector B’ can be defined in analogy with equation (2.2) as 

where q;A are generalised coordinates. A new electric field vector E’ can also be 
defined in analogy with equation (3.9) as 
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where p i A  are new canonical momenta. If equation (5.1) with equation (6.1) is 
substituted into equation (2.2), the result is 

(6.5) 
with the help of equation (3.9). Likewise, if equation (5.2) with equation (6.2) is 
substituted into equation (3.9), the result is 

(6.6) 
Equations (6.5) and (6.6) are the usual duality transformations on the classical 
electromagnetic field (Jackson 1975, p 252). The duality transformation remains valid 
for the quantised electromagnetic field where the generalised coordinates and momenta 
in equations (6.3) and (6.4) are replaced by the corresponding operators that satisfy 
the canonical commutation relations. 

When equations (6.5) and (6.6) for the quantised fields are used in equations 
(4.6)-(4.8), we find 

(6.7) 

B = B’ cos 6 -E’ sin 0, 

E = B’ sin 0 +E’ cos 8. 

[BI (x, t ) ,  EI(x’,  t ) ]  = iheiik&6(x -x’), 

[BI(x,  t ) ,B j (x ’ ,  t ) ] = O ,  
and 

[E:  (x, t ) ,  E; (x’, t ) ]  = 0. 

Therefore the form of the commutation relations of the theory is unchanged under 
duality transformation. The Maxwell equations for the free fields in equations (2.5), 
(2.7), (2.8) and (2.13) are also form invariant under the duality transformation in 
equations (6.5) and (6.6). 

For the choice of 8 = ~ / 2  in equations (6.5) and (6.6), we obtain 
B = -E’ 

and 
E = B ’ ,  

(6.10) 

(6.11) 
which essentially reverses the roles of the electric and magnetic fields. The Maxwell 
equations and the commutation relations are form invariant under general duality 
transformations, and are therefore unchanged under the transformation in equations 
(6.10) and (6.11). From equations (5.1) and (5.2) the roles of generalised coordinates 
and conjugate momenta are interchanged when 8=.rr/2. In this case the Fourier 
coefficients of E’ are generalised coordinates and the coefficients of B’ are canonical 
momenta, which is the choice made by Scully and Lamb (1967) and Sargent et a1 
(1974). Therefore the theory of Scully and Lamb for the free electromagnetic field 
is equivalent to the theory of Power (1964), which is developed here in a canonical 
way, since they are related by a duality transformation. 

7. Conclusion 

In this paper a manifestly gauge-invariant canonical quantisation of the free elec- 
tromagnetic field is made using the standard Lagrangian density for the electromagnetic 
field :(E2 -8’). If the Lagrangian of the free electromagnetic field is compared with 
the Lagrangian of classical mechanics, it is natural to associate $8’ with the potential 
energy and $E2 with the kinetic energy. The Fourier coefficients of B are associated 
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with generalised coordinates, and the Fourier coefficients of E are associated with 
generalised velocities, which is consistent with the Lagrangian as kinetic energy minus 
potential energy. In this procedure Faraday’s law is kinematical, while the Ampbre- 
Maxwell law is a dynamical law, which is consistent with the gauge theory point of 
view (Kobe 1978, 1980). This choice, which is used by Power (1964), is also consistent 
with the usual radiation gauge quantisation procedure (Heitler 1954, Sakurai 1967). 

On the other hand, Scully and Lamb (1967) consider only the Hamiltonian density 
$(E2 + B 2 ) ,  where there is no suggestion as to how the kinetic and potential energies 
are distributed. They identify the Fourier coefficients of E with generalised coordinates 
and the Fourier coefficients of B with generalised momenta. In doing so, they chose 
4B2 to be the kinetic energy and iE2  to be the potential energy. They could then 
quantise the system in a canonical way. In their theory Faraday’s law is the dynamical 
law, while the Ampbre-Maxwell law without sources is the kinematical law. This 
approach is not consistent with the gauge theory point of view (Kobe 1978, 1980). 
It fails if interactions are included, because currents are not included in the Ampbre- 
Maxwell law. 

This paper shows that when the Lagrangian is used, as it must be to define canonical 
momenta, the theory of Power is based on the standard Lagrangian density %E2 - B 2 )  
while the theory of Scully and Lamb is based on the non-standard Lagrangian density 
$ ( B 2 - E 2 ) .  For the free electromagnetic field the procedure of Scully and Lamb can 
be obtained from the procedure of Power by a canonical transformation on the 
generalised coordinates and momenta, which is a rotation in generalised phase space. 
We show that this canonical transformation is equivalent to a duality transformation 
on the electric and magnetic fields. 

When the electromagnetic field interacts with charged matter this equivalence of 
the procedure of Power and Scully and Lamb no longer holds. In this case the 
procedure of Power based on the standard Lagrangian density and developed in a 
canonical way in this paper must be used. The interaction of the quantised electromag- 
netic field with charged matter can be taken into account by using the multipolar 
Hamiltonian, which expresses the Hamiltonian in terms of integrals involving the 
electric and magnetic fields (Woolley 1971, 1974, 1975, Babiker et a1 1974). On the 
other hand, the minimally coupled Hamiltonian with the transverse vector potential 
can also be used, since the transverse vector potential can be written as an integral 
involving the magnetic induction (Belinfante 1951a, b, Belinfante and Lomont 1951, 
Marx 1970, 1972). The multipolar Hamiltonian is related to the minimally coupled 
Hamiltonian using the transverse vector potential by a unitary transformation (Woolley 
1971,1974,1975, Power 1978). There are thus ways in which the interaction between 
the particles and the electromagnetic field can be expressed in terms of the electric 
and magnetic fields, but they are non-local. Therefore potentials, and the consequent 
problems of fixing the gauge and proving gauge invariance, can be avoided, since the 
electromagnetic field can be quantised in a completely canonical gauge-invariant way 
using only the magnetic and electric fields. 
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